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Realizable Limits of Error for Dissipationless

Attenuators in Mismatched !!%tems

D. C. YOULA, SENIOR MEMBER, IEEE, AND P. M. PATERNO, MEMBER, IEER

Summary—A tutorial exposition for the exact physical error lim-

its due to mismatch for dissipationless attenuators is presented. The

results given yield smaller errors than previous existing formulas

due to the inclusion of the physical realizability constraint of passiv-

ity. Graphs are included for rapidly determining the largest error for

a prescribed set of conditions. Thhi work is based on an analysis

prepared by D. C. Youla which had a limited circulation.1

lNTRODUCT1ON

F
ORM ULAS for the errors resulting from mis-

matched generator and detector sections in the

measurement of the attenuation of a single attenu-

ator are well known.2,3 However, with a single exception4

none of these formulas takes into account the phase
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restrictions on the various coefficients due tcl the physi-

cal realizability constraint of passivity. The usual

formulas exhibit limits obtained by choosing the worst

possible phase combinations and, therefore, lead to un-

necessarily large errors. In this paper a complete solu-

tion is presented for the @lzysical error limits due to mis-

match for dissipationless attenuators calibrated under

the standard condition of conjugate termination. This

includes, of course, the class of equal-resistance attenu-

ators but is more general.

GENERAL BACKGROUND

In a previous publication,5 a complete scattering

description for a linear time-invariant 2N terminal net-

3 R. W. Beatty, ‘(Mismatch Errors in the Measurement of Ultra-
high Frequency and Microwave Variable Attenuators, ” NBS Res.
Paper 2465, vol. 52, no. 1; January, 1954.

4 L. O. Sweet and M. Sucher, ‘(The available power of a matched
generator from the measured load power in the presence of small
dissipation and mismatch of the connecting network, ” IRE TRAM.
ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-5, PD. 167-168:Part I,” Polytechnic Institute of Brooklyn, Brooklyn, N. Y., Memo.

No. 68, PIBMRI-1042-62. April, 1957.
. -.
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McGraw-Hill Book Co., Inc., New York, N. Y., p. 824; 1947. port numbers, ” PROC. IRE, vol. 49, p. 1221; July, 1961.
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work terminated with complex impedances zN at each

port was presented. The approach used was to define

the normalized incident and reflected wave amplitudes

aK and bK as linear combinations of the respective port

voltages as shown below.

24< UK = VK + ZKIK (1)

2v’~ bx = VK – ZKfK (2)

where

?’K = Real z&@) > 0.

VK, IK = voltage and current at port k, respectively,

and a bar over a quantity denotes complex conj ugate.c

The relationship between a~ and bK is defined by means

of the linear matrix equation

b=Sa (3)

where S the scattering matrix of N is normalized with

respect to the n impedances

Zl, Z2, o. . , Zn.

If all ports of N except the kth port are closed on

their respective normalization impedances and port k

is driven by a generator with internal impedance zK

it can be shown that

bK ZK–~
‘= SKK=—–
aK .zK + ZK

(4)

In the above, SKK, ZK represent the input reflection

coefficient and input impedance at port k under matched

conditions. An immediate observation is that (4) admits

a correct solution for the special case of conjugate ter-

mination, an answer which cannot be obtained from the

usual formula obtained from standard normalization

procedures.

In light of the above remarks, consider a situation in

which a generator E with internal impedance ZOI is con-

nected directly to a load impedance zOZ (Fig. 1). Let

ral and roz denote the real parts of zO1 and z02, respect-

ively. From first principles, PZO, the average ac power

delivered to the load is given by

(1 Z02 — 201 2
Plo = Pm.. 1 — ——

1)
(5)

Z02 + Z(J1

where

(6)

is the maximum available generator power, and bar

denotes complex conjugate.

Suppose now that a passive 2-port N is interposed

between zOJ and 202 (Fig. 2). Denote the scattering

matrix of N no~malized to Zol at port No. 1 and Zoz at

port No. 2 byJ

E The notation used in this paper is consistent with that used by

I J

Fig. 1—A direct interconnection of generator and load.

Fig. 2—.lttenuator schematic.

[

$11” S12”
1

so= — — I (7)

S21” s.&?”
I

The average power, VVzo, that is now delivered to, zOZ is

The attenuation loss in decibels, AO, attributable to the

interposition of N, is by definition

A. = lologfl
Wlo

(9)

(1
202 — Zol 2

=lo log l–
Z02 + 201 1)

+2010g —”
1 s:,”\

Under conjugate terminations zO1= 202= zO, say

A. = 2olog —
I s:,”\ “

(lo)

(11)

In the laboratory, the microwave engineer usually

finds himself in the position of operating an attenuator,

calibrated under a standard set of conditions, ZO1= Z02

= zO, between mismatched terminations z~ and zt. The

calibration procedure used here includes the case of

matched resistive terminations but is more general.

Moreover, very little or no phase information is avail-

able concerning z~ and Zz. Usually the only data which is

known to any degree of accuracy is embodied in the

magnitudes of the mismatch reflection coefficients

zg — z.
rO=————

Z. + .%

and

z/ — 2.0
rz=——.

Z[ + z.

(12)

(13)

If A represents the attenuation actually achieved under

the conditions described above, the mismatch error is

Youlaj e= A—AOdb. (14)
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Since the attenuator setting is measured by I S,IO] and

(A. =20 log (1/] Sjlol )) the problem reduces to finding

the largest value of Iel, for a prescribed set of values
Do ~ 1 – ~,~liO– rz~zzO+rgrtAo. (23)

]1’ol, \I’tl and\s~~Ol, subject tothelimitation that N, From (20)

Zg, Zz and ZO are@ssive. In what follows, log u and in a

denote the logarithms of a taken to the base 10 and e,

1-1

s~l” 2 [ D./2
. _——

(1 - ] ro]9(l - ] r,l~) “
(24)

respectively. Sal

ANALYSIS Combining (13) and (15) results in

The first step is to derive an expression for c. Let
6 = 10 log

r 11

I Sll S12

s=l — —
which reduces

(15) (17) and (24)
I

1S21!S22J
denote the scattering matrix of N (the same attenuator)

(i

2

~ ‘+ lolog 1– =%
- )

(25)
S21 .zt + ,z~

to the following compact expression when

are substituted into (25):

Do
e = 20 log db.

1 – rort
(26)

—
normalized to z~ at port 1 and zz at port 2. Then, pro- To find the largest value of [ ~1 , ~e] ~.X, it is necessary to
ceeding as before [see (10)], determine the two extreme limits

( zl—zg~
A= 10 log i– — 1)+2CI log—

ZJ + Zg
\ :,1 ~ (16)

Now

(Z. + ig) (z, + 5,)
——

(z, + z,) (z, + 2,)

The details appear in Appendix I. EJefore (16) can be

used, a relationship between the elements of S and So is

required. This is necessary since the calibration of the

attenuator is described by the elements of SO when nor-

malized to zO1 and zOZand is used between terminations

Z@and zz which in general are different from zO1, zOZ. In

Appendix II it is shown that

I – r, S110+ ~grzs220 – rzAo – T’g
—

’11 = 1 – r,” D.

l–rt I
l–r,

— . ——.

‘12=1–T, I–rt

S120V(1 – I r, 1’)(1 – I rz l’)

l–r, l–r,
S21 = — ——

1 – R“ l–r,

S210V’(1 – I rfll’)(l – I rz l’)

Do

and

1 – rz S220+ rQi7zs110 – r~Ao – Tz
.$22 . —— —..

1 – Tl”— D.

where

AO = det SO = SllOSZZO— SIZ”SZ1”

and

D.
Am =

1 – rgrz mi~

(27)

(28)

subject to the physical realizability restrictions dis-

cussed above. If

~n~M S 1, (29)

then

[ e \max = – 20 log L = 20 log x,.-”’, (30

but if

LAM > 1, (31)

then

] 6 Im,x = 20 log bra (32)

(M) The choice of formula will depend, in general, not onl y

on the attenuator setting, A., but also on the parameters

/S1lO/ , ISIZOI, 1S2201, lr~l and ]11,1. We shall see later
that for Iossless N (filters, cutoff attenuators, etc.) the

three quantities Ao, \ I’,~ and ] I’l\ suffice.

(19)
CONSTRMNTS

The passivity requirement on N is equivalent to stat-

ing that the three principal minors of the 2;< 2 hermitian

matrix

(20) Qo = 1, – SO*S.

are non-negative,’ i.e.,

]s,, ”12+ ]s,2” ]’< 1 (33)

(21)
I S22”]2+ [ s2,”/’ <1— (34)

7 H. ]. Carlin, “The scattering matrix in network theory, ” IRE
(22) T~ANs, ON C,LWLJI~ ‘r”~o~y, VO1. CT-3, pp. 88-96; Jwne, 1956.
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and

(1 – I Sn”l’)(1 – ] M“)’) + (1 – \ W]’)(I – \ ~22”]2)

>1 + 2 Re (s110s220fi0~1”). (35)

If N is lossless, 12 – S.*S. = 0, and the inequalities in

(33)-(35) become equalities:

\sl,” ]’+ ]s12”]’ = 1

ISn”lz+\S21”12 = ~’

(36)

(37)

and

——
—;=OS’J1”S1l” + Sz’”slz . (38)

Eqs. (36)–(38) imply the equality of the magnitudes of

front and back-end reflection coefficients:

lsllO1 = l~z’”1 (39)

As a rule attenuators are 10SSY but there are situations

in which Iossless transforming networks play a role, and

they will be discussed later on.

The most important realizability constraint is the

inequality expressed in (35). To cast it in a more man-

ageable form let

s,,. = I sllol e~~ll

s,, = I s,,. \ e@l,

s,,. = I S,l. I /@l

S220 = I s,,\ eezz. (’40)

Substituting in (35) and simplifying yields

(1 – ] S,,”]’)(I – ] s’,”\’) +(1 – [ Sn”l’)(1 – ] S,2”[’)

> 1 + 2 ] s11°s220s120s210] Cos /3 (41)

where

P = %1 + 022 – 6’12 – 021. (42)

For reci@ocal attenuators, s120= S21O

= ] SZIO], 012=021 and

and hence [ sIZO]

B = 811 + 022 – 2012. (43)

Clearly, (41) implies that any four realizable magnitudes

ISIIo\T!S’lO1 ! \ SP~Ol and I SZZO\ satisfy the inequality

(1 – \ S,,”] ’)(1 – I S,,”l’) +(1 – \ SI,”] 2)(1 – \ S’,” I’)

> 1 — 2 I Sll”szzoslzos’lo ) . (44)

This corresponds to a choice of phases, for which

P= (2~+l)m, k being an integer:

011 + 0“ – 01, – 0,, = (2k + 1)7. (45)

According to (41), the principal value of /3 cannot be

too small. Its lower bound is determined from the equa-

tion

For lossless twoports, (41) simplifies considerably. Using

(38) we find

011 + 022 – 012 – O*1 = (2k + l)7r. (47)

It is easily verified that, in this case, the equality sign is

attained in (44).

Let us return to the problem of determining A,M and

Am. Before embarking on the general analysis, it is advis-

able to dispose of a simple but important case first.

Case 1

At least one port matched. For this case, either rO

or 17z or both are zero. Suppose, to be definite, that

170= O. From (23), (27) and (28)

X,W = 1 + I rz~,zol (48)

k,n = 1 – I rzs2201 . (49)

Since

AnXJI = 1 – I rls,201z <1,

I ‘Irn= = - 2010g(l - I rzs2201 ). (50)

To achieve (48), 17z must be 180° out of phase with SZZO.

In order to attain (49), I’ L must be in phase with SZ’O.

Both are compatible with physical realizability. Replac-

ing log a by in a in (50) we obtain for small I I’zszz”l

I ~lm= = 46 I rls~~” I . (51)

The per cent decibel error is

I eIm=~ ~Oo = _ 2010g (1 – I ris22”[ ) ~ loo
——

/40 AO
(52)

It is not possible to express (52) solely in terms of the

attenuator setting A. unless \ Szz”I is known as a f unc-

tion of Ao. Naturally, if I’t = O we simply replace rl by

I’, and SZ,Oby suo in (41)-(52).

Filters and cutoj attenuators are, to an excellent

approximation, examples of dissipationless attenuators

and are important not only at low frequencies but also

in the microwave region. For them, a complete answer

to the question of mismatched terminations is available.

Case 2

The attenuator N is dissi$ationless.

equations are (36), (37), (39) and (47).

them we get

AO = \ slI~szz. I e~t~ll+~z!) — ] ~120.s210

—— ~j(f111+~22)

set

r, = \ r. [ e~~a

and

rz = \ rll e~~t.

The pertinent

Making use of

ej(elz+$zl)

(53)

(1 – I S,’”1’)(1 – I s,,”]’) + (1 – \ S,,”l’)(1 – \ S22”12) – 1
COS~,.i~ =

2 ] sll”s22°s120s210 [
(46)
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Then

l– rcrl l–

where

~ = I sll”l = I SZZ”I = (1 – lo–-G/lO) 1/Z. (55)

Of course, A o represents the attenuator setting in

decibels. In the form (54), realizability has been taken

care of automatically and 011, 621, (1~, f?l are arbitrary

angles. If we set

~ = I r~ ] @~+hI)

and

Do I–?l(x+y)+xy
.— .

1 – I r,rz I ei(fl~+~’)
(56)

1 – r,rl

where x and y are complex numbers with arbitrary

phases but whose magnitudes are II’. I and / r ~1, respec-

tively. A moment’s thought reveals that

I+v(jrg ]+lril)+lrgrzl
AM = (57)

1– \rOrL/

and

(58)

Let us focus our attention on the quantity

Zt=l-q(.v +y)+fly=(x— q,)y+l —?pr. (59)

For a fixed x, u is a linear transform of y. Consider the

mapping

u=az+b. (60)

Then

u-b
~=—

a

and the circle I ZI ~= r~ goes into the circle

]ar]’=lu-b]’ (61)

whose center in the complex plane is b and whose radius

is I al Y. From (59), the circle \ Y I z = I Pt 12 is transformed

into a circle with center located at 1 — TX and radius

=Ix–ql .l17~\ (see Fig. 3).

We note that

(64)

(65)

Now the magnitude of x is fixed at the value I I’, I but

its phase is arbitrary. Obviously, as we vary over the

phase of x,

14IIMX, max = l+q]r,l +]rz\([rf71 +v)

as predicted earlier. The more difficult quantity to

evaluate is I Z~I rni.,~inl the variation again being taken

over the phase of x.

Let x = I I’al ei9. Then, substituting in (65) we get

]Ul –(1–2vlro] cOso+q’lr.l’)l/’mill —

- lrll(lr,\z-2qlrU] C050+V’J1/Z (66)

and the whole problem is reduced to finding the relative

minima of (65) as a function of 0. This is a standard

problem in the differential calculus which presents no

particular difficulty. The details are relegated to Ap-

pendix III. Keeping in mind that

the results may be summarized as follows:

1) If

(66a)

2) If

4!3
B

c

~TR&NS FORMED CIRCLE

r Iu-bl’=ld
A

//

/“

o
——

Fig. 3—Image of the circle /y\ 2= ~rl j‘.

(69)
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3) If

(71)

In all cases,

] c \max = largest (20 log A,,,, 20 log Am-’), (73)

where

PR~CTIC~L APPLICATIONS

To facilitate the application of the above equations,

graphs have been prepared and these are displayed in

Figs. 4 to 10. Fig. 4 is a plot of q as a function of (A.),

the attenuator setting. Values of

Irgl+lrll

Z+ Ir,r,l

and

IIrol -lr,l~

1– ]rortl

are obtained from Figs. 5 and 6 which are plotted as a

function of 1170\ . In both cases, I rz I is the parameter.

Eqs. (68), (70), (72) and (74) are displayed in nomograph

form in Figs. 7–10 respectively. Each chart contains

a key. The numerical sequence indicates the order of

steps. Fig. 8 is the only chart with a restriction. In using

the extreme right hand side of the chart, if I r, I > I r, ,

then the I I’L I scale becomes I I’,] ancl I I’, I scale I I’1 .

To illustrate the use of these curves, consider the fol-

lowing example. A cutoff attenuator reads 10 db when

operating between mismatched terminations specified

by 117, I = 0.1 and I I’L \ = 0.2. Find the largest possible

error consistent with physical realizability. The pro-

cedure is as follows. Figs. 4–6 provide the necessary

information to determine which curve should be used to

obtain the largest minimum error. For this example,

Fig. 4 shows for AO = 10 db, q = 0.949. For the values of

I I’. / and I I’,] quoted, Fig. 5 yields

\I’,\ +]rzl =0,294

1+ Irgr,l

and Fig. 6 yields a value of 0.102 for

IIvl-hzll ,
1– Jrorz J

Since 0.949>0.294, we have Case 3 and (72) applies;

therefore, Fig. 9 must be used, Step 1 is to connect

II’,] to Ir.1 for a reference line. Draw a line through

n =0.949 parallel to the reference line and read 11= 0.29.

Connect \ I’gl to I I’ll in left side of chart and read

Q= 1.025. Connect Q on upper scale to II and read

~~–’ = 1.375. To determine AM Fig. 10 is used. The first

step is to connect I r~ I and I I’ll to obtain a reference

line. Since this part of the chart is similar to Fig. 9,

the same procedure is followed and a value of 11= 0.29

is obtained. Step 3 yields a value of 1.025 for Q, and

step 4 a value of 0.975 for T. Connecting Q’= Q on

upper chart to lZ yields a reference line. Drawing a line

through T parallel to this reference line yields a value of

1.33 for l.tr. Hence, k~–~ >AJ~ and

\ tl~.x = 20 log (1.375) = 2.77 db,

which is quite large. As far as the actual attenuation A

is concerned, it always lies between limits determined

by A., ~m and XfiI, From (13)

A. – 20 log Am-l < .4 < A. + 20 log AJf. (75)

Using previous techniques, the problem proceeds as

follows.

For the values quoted, the VSWR of the load and gen-

erator when they are not connected to the attenuator

are 1.5 and 1.22, respectively. The maximum and mini-

mum value of the VSWR of the input line when the

output is terminated in a load rL = 1 is given by

r*,~x = rt?’L

and

I

r’
— for ?’ > rL
rh

?’,~i~ =

[r’

where r! is the VSWR produced in the input line when

the output is properly terminated; that is, r~ = 1. For a

lossless 10 db attenuator r’= 38.22. Hence, r~.X = 57.33

and r~i,l = 25.48. The error limits are evaluated from

(8) of Beatty’s paper’ which is

(1 + I rlrdl)(l * \S22rLl )
~~i~ = 20 log

lT ]rgrLl

In the above 171 and SZZ are the input reflection

coefficients of the attenuator terminated in a load hav-

ing a reflection coefficient of rL = ().2 and 0, respectively.

The reflection coefficients corresponding to r~a~, rrni.,

r’, rL and Yu are 0.966, 0.924, 0.949, 0.2 and 0.1, respec-

tively. The maximum and minimum error limits using

the above relation are 2.86 and 2.48 db, respectively.

There is a slight difference in the larger value and, in

general, a difference will always exist, i.e., larger error

limits arise from the use of previous existing techniques.

It is evident that the use of the curves expedites the

evaluation of error limits. In addition, it is usually not

obvious which maximum will be the larger, depending

upon the choice of signs used in (8) above, whereas this

information can usually be obtained from the curves in

this paper.



You/a and Paterno: Limits for Error for

30

20

10
9
8

/
/

7 {

6 /

5. /

4 / ‘
/

3 /

/’

2 //

/

0: /

08 /

0.7 /’

06 /

05 /

04 4

0,3 /’

0,2 /~

010 ~,, ~2
03 o’1 05 0,6 07 08 03 ,0

?

I I

l/Y/b’A’A’Z# i50

171ZX/1’I i I i I i2

02 f I

01

0
01 02 03 04 05 06 07 05 09 10

Irgl

Fig. 5

Affenuafors

Fig. 4 (l@) -At.tenuator setting (A.) vs ~.

(below left)—Values of

Irg]+lr,l
———— —-— Vs

l+lrortl

Fig. 6 (below right)—Values of

111.1-ln~vs
1– /rarll

,

x J I I

i D
0, 02 03 04 05 ,rgl., 07 08 09 ,0



296

0,

.2-

.3-

.4-

,5-

.6-

7-

8-

,9-

1-

20.

I 9-

18-

.—

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

1098765 43210

T

t
10

Fig. i’.

?0

to 4

T
10

9

/

IHI

KEY 95

35
~ Q #

.8
Q lrgl+T / 2’

“’ @
3 /’ lrql~a

,7 Irll--a / 385
/

/

}
8

6- .4
-25

5- -225

-2
,4-

,7’7
-175

.3-

8

-! 5
.2-

-125
1-

t\,? }./ @i RI. t’

L 1. t’

,1/~
~,.c-.

~~ ‘u
.

15 6

7 10 8 16

tQ 7
[7

8 12
9 18

-8

9

1
9

1,0 10

q[ 75 lrql
I

Q ,5- ,T

-65
6-

-.6

~. -55

-5

8-

-.4

.9- ,3

-2

,0—:

May

, L
.2

*O If lrl[>h[SCale S For 1
OPemt!on @j Are Reversed

10

IE.lrd-lril, lr~I+lrgl

Fig. 8.



1964 Youla and Paterno: Limits for Error for Dissipationless Attenuators

x J
ia 11523456 789101112 131415161718 1920

1~1 Ii

20– ‘21,1 0 -10

-.4

I 9-
-6 I-q (lrql+lril)+lr~r~l -’3

-,8

1-
[ 8-

-1.0 , ,2- -,4
1.1-

1 2- -12
I 3-
1 4- ., ~

I 7- ,.5 -7

16- .,6

! 7-

16- ;: -6

1 5– -5

14- -4

Irilt

20

1,9

18

17

16

15

1.4

1.3

!, 2

1!

1

Fig. 9.

d~ T\ lrgl~ ]rgl/ 1,~
~o 0 200

~ ‘1 ~

Am=

20
15

10- 29
,/

.1 18 1--2 2
8

7 /’
6 / ,3

.4 5
/“

.2 16.2- -.4 4

/
Am /

/

.5 ?

35
6 3 14 3- -6 6

3

/

7

8 25 .4 1.2 4 --8 ,8

1- 10 2 .3 10,3- -10
~lyl 9

Y. ‘+8 ‘t”P ,‘“ ‘l’,. tt
1.2

\

,.
6

.5. t+

14

/,

.4

3 / ,’il.3 t t

/ Irll \.(a .7+ 6 .7+14

Qt tI,

Fig. 10,

\

9

10

\

KEY
\

4\
‘\

Irl I
\,

<,
\

\ \
‘\

\

II

0

‘3

8

7

6

5

4

3

z

1

0

t

297



May298 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

APPENDIX I V+ ZI=V+ZOI+(Z– ZJI

We begin by establishing (17). From (12) and (13) = 2R01/2a0 + (Z – 20) YAOJ!?O

we obtain = [2 R0’/’ + (Z – Z~)Ro-’/’(l,, – SJ]a.. (87)

2?’0
— 20 (76) Similarly-,

‘U=l–ra
V – Z*I = [2 R.1/3 – (Z* + ZJR.-l/2(ln – s.)]ao (88)

and
where YAO and Y~ are the augmented admittance ma-

2ro
~t. — ——z. (77) trices corresponding to Zo and Z, the impedance ma-

1 – I’1 trices which normalize So and S, respectively. From the

where

ZO = rO + j.tO.

above there results

2Rol/2 + (Z – ZO)RO–l/z = (Z + ZO*)RO–l/J (89)

From (76) and (77),
and

2R01/z — (Z* + ZO)R01/2 == (ZO* — Z*) RO–1/2. (90)
_2yl–lrv]’

zg+zQ— .
ll-rfll’

(78) Set

I– \r,12 r = R.1/2(Z + ZO*)–l(Z – Z, JR,.-l/z

z/ + 2L = 27’0 —— _

(91)

11-r,12”
(79) or

= in – 2Rol’qz + zo”)–lRol/~ (92)

1 – rvrz r = Ro–l/z(Z – 2.) (Z + ZO*)–lR.1/3, (93)

Zg + z~ = 2T0 —————— .
(1 – rc)(l – r,)

(80)

From (82)

Again,

Substituting (7 S), (79) and (80) into the equation

direct] y above (17) immediately yields (17), Q.E.D.

AITENDIX 11

Before showing this relationship, we first introduce

matrix notation which is consistent with Beatty.s If .4

is an arbitrary matrix, then .4’, A‘ = .4*, det .-l and A–1

denote the transpose, the complex conjugate transpose

(also called the ad joint), the determinant and the in-

verse of .4, respectively. Column vectors are written

a, b, x, etc.

In the text since two sets of impedances, zOI, zOZ and

z, and z~ were used two different scattering matrices SO

and S were required to describe N. To determine a

relationship between S and S. we begin with expressions

(1) and (2). By definition

bo = S.a.

b = Sa.

From (1) and (2) the following

form) are obtained:

2R.1/za. = V +

2ROll~b0 = V –

2R1/~a = V +

~R1/3b s V _

LTsing (83) and the first formula

(81)

(82)

equations (in matrix

2.1 (83)

Z.*I (84)

21 (85)

Z*I. (86)

below (16) in l’oula~

v – Z*I == R1/2SR1/2(V + 21). (94)

Using (91) and (94)

(z* + ZO)RO-l/’(SO – r*)

= R1/2s&I/2(~ + zo*)&-U2(ln – rso). (95)

From (92) and (93)

(Z+ Z.*) R.-’/’ = 2R0’/’(l,, – r’-’ (96)

and

(z* + Z.) Ro-l/’ = 2Rol/’(1,L – r*)-1. (97)

Finall~,

s = R-I/~RoIH(In – r*)-l(So – r*)(l,, – r~.)-l

. (1,, – I’)RO-’/’R’/’, (98)

the desired transformation. For a two-port

RO = diag [TO,, yflJ

Za = diag [Z.,, zO,]

r = diag [r’,, r,]

and expressions 18 to 21 in the text follow.

,4 E’PENDIX III

Our next task is to derive (67)–(72). To find the

minima of I u I ~.i. it is necessary to set the first 6 deriva-

and (18) of the same paper results in tive of (66) equal to zero. Thus,
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The solutions are

0=0, T

and

The corresponding \ u 1,,,,, are

0=0:

Iulmin=l-vlrgl - lrLl

e=lr:

lfLlmin=l+q(lrg\-]r,

(loo):

1.

q+lr,l
]r,l >—–-

I+qlrul
(108)

and a maximum otherwise. The value oi 19Siven 13}7 (100)

(99) always results in a Minimum. To summarize,

1) If

l~-lr(,ll 7+]rgl
<]rll <— > (109)

I–vlr,l I+nlr,,l

1+ Ir,r,l
~,,,-1 = — —— === $ (110)

(loo) <(1 –q’)(l – I r,l’)(1 – I rzl’)

2) If

l~-lrgll
]r, ] <———

l–q]rgl ‘
(111)

(102) 3) If

(103)
(113)

To decide when these values are actually minima, we 1 + j I’”I’, I

must calculate the second 6’ derivative of I u I rni~, and
A,,z–l == ——_ —-— “ (114)

l+q(\r,l – lrll)– Ir,r,l
evaluate it at the respective points. Omitting the de-

tails we have the following results:

0=0:

d’) lL lmin

d02

(100) :

a’] 21 I,,,,n
do,

–klrL\(t– ]rz]’)>~,—

k being a positive constant.

(104)

.is they stand, (109)-(1 14) are unsymmetric in I I’, ] and

I r, TCI remedy this defect, we argue as [O11OWS. Let

I I’ql , I I’ll and q be three values consistent with (91).

Consider the bilinear transformation

(11.5)

As .$ describes the circle I & I = q, w also describes a circle

and furthermore

(105) i.e., I w] ~-ields all the values I r, I compatible with (109).

Let I w I = I I’, I denote one of these. Solving (1 15) for $

gives

(116)

(106)
.& w describes the circle \ zul = I r’z 1, & also describes a

circle and on this circle

Consequently, (100) always leads to a minimum. Eq. IIrfll-lr, ]l <l&l=q<\r,,\+lrtl
(104) reveals that 6= O yields a minimum whenever _____

1– Ir,rlj –
— . (117)

I I—II 1+ Ir,rz]

I

and a maximum

minirnu,m when

IV– II’(, II
rl ] < —-—–-——– (1~~) That is to s~y,

l–TIP(,I
for a prescribed I I’,1 and \ 17,\, (1~ 7)

yields all q compatil)le with (109). In short, (109) and

otherwise. Similarly O= rr yields a (1 17) are equivalent. Following this reasoning to its

lo~ical conclusion, we obtain (67)-(72), Q.E.D.


