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Realizable Limits of Etror for Dissipationless

Attenuators in Mismatched Systems

D. C. YOULA, SENIOR MEMBER, IEEE, AND P. M. PATERNO, MEMBER, IEEE

Summary—A tutorial exposition for the exact physical error lim~
its due to mismatch for dissipationless attenuators is presented. The
results given yield smaller errors than previous existing formulas
due to the inclusion of the physical realizability constraint of passiv-
ity. Graphs are included for rapidly determining the largest error for
a prescribed set of conditions. This work is based on an analysis
prepared by D. C. Youla which had a limited circulation.!

INTRODUCTION

ORMULAS for the errors resulting from mis-
Fmatohed generator and detector sections in the
measurement of the attenuation of a single attenu-
ator are well known.?® However, with a single exception*
none of these formulas takes into account the phase
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restrictions on the various coefficients due to the physi-
cal realizability constraint of passivity. The usual
formulas exhibit limits obtained by choosing the worst
possible phase combinations and, therefore, lead to un-
necessarily large errors. In this paper a complete solu-
tion is presented for the physical error limits due to mis-
match for dissipationless attenuators calibrated under
the standard condition of conjugate termination. This
includes, of course, the class of equal-resistance attenu-
ators but is more general.

GENERAL BACKGROUND

In a previous publication,® a complete scattering
description for a linear time-invariant 2N terminal net-

3 R. W. Beatty, “Mismatch Errors in the Measurement of Ultra-
high Frequency and Microwave Variable Attenuators,” NBS Res.
Paper 2465, vol. 52, no. 1; January, 1954,

4 L. O. Sweet and M. Sucher, “The available power of a matched
generator from the measured load power in the presence of small
dissipation and mismatch of the connecting network,” IRE Trans.
oN MicrowavE THEORY AND TECHNIQUES, vol. MTT.5, pp. 167-168;
April, 1957.

5 D. C. Youla, “On scattering matrices normalized to complex
port numbers,” Proc. IRE, vol. 49, p. 1221; July, 1961.
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work terminated with complex impedances zy at each
port was presented. The approach used was to define
the normalized incident and reflected wave amplitudes
ax and bg as linear combinations of the respective port
voltages as shown below.

247k ax = Vi + 2xlx (N

2Vrx b = Vi — 2xlx 2
where

rk = Real 2x(jw) > 0.

Vi, Ix=voltage and current at port k, respectively,
and a bar over a quantity denotes complex conjugate.b
The relationship between a¢x and bx is defined by means
of the linear matrix equation

b=3Sa 3)

where S the scattering matrix of IV is normalized with
respect to the #» impedances

Zyy Loy o vy L.

If all ports of N except the kth port are closed on
their respective normalization impedances and port &
is driven by a generator with internal impedance zx
it can be shown that

bx Zx — 2x

(4)

= Spx =

ax Zg+ 2k
In the above, Skr, Zx represent the input reflection
coefficient and input impedance at port k2 under matched
conditions. An immediate observation is that (4) admits
a correct solution for the special case of conjugate ter-
mination, an answer which cannot be obtained from the
usual formula obtained from standard normalization
procedures.

In light of the above remarks, consider a situation in
which a generator E with internal impedance 2o is con-
nected directly to a load impedance 2o, (Fig. 1). Let
791 and 7o denote the real parts of zy and 2¢, respect-
ively. From first principles, P, the average ac power
delivered to the load is given by

Plo: Pmo'<1 - @3—201 2) (5)
Zo2 + Zo1
where
Pro = l EF (6)
4rgy

is the maximum available generator power, and bar
denotes complex conjugate.

Suppose now that a passive 2-port N is interposed
between zg and 2o (Fig. 2). Denote the scattering
matrix of N normalized to zp at port No. 1 and zg at
port No. 2 by?

® The notation used in this paper is consistent with that used by
Youla®
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Fig. 1--A direct interconnection of generator and load.
N
PASSIVE Z
2-PORT (2) 02
ATTENUATOR
| e
Fig. 2—Attenuator schematic.
S11% | $19° ‘I
So=|——1. (7)

The average power, Wi, that is now delivered to 2o is
Wio=|su° [2Pmo. (8)

The attenuation loss in decibels, A4,, attributable to the
interposition of &, is by definition

Plo
A, = 10 log (9)
lo
202 — Zo1 |?
= 10 log (1 - =7 )
Zoz + 201
1
+ 20 log ——- - (10)
| 210
Under conjugate terminations gg =% =2¢, say
1
4, = 20 log -——— (11)

]

In the laboratory, the microwave engineer usually
finds himself in the position of operating an attenuator,
calibrated under a standard set of conditions, 2o =Zp
=32y, between mismatched terminations 2, and 2;. The
calibration procedure used here includes the case of
matched resistive terminations but is more general.

Moreover, very little or no phase information is avail-
able concerning z, and z;. Usually the only data which is
known to any degree of accuracy is embodied in the
magnitudes of the mismatch reflection coefficients

29 — %o

Iy = - (12)
and
21— %o
e 7+ % . =

If 4 represents the attenuation actually achieved under
the conditions described above, the mismatch error is

€ = 4 — Ao db. (14:)
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Since the attenuator setting is measured by |s2°
(4,=20 log (1/|sx°|)) the problem reduces to finding
the largest value of | €|, for a prescribed set of values
IT,|, |T:| and |s:], subject to the limitation that NV,
24, 2: and gz are passive. In what follows, log ¢ and In a
denote the logarithms of ¢ taken to the base 10 and e,
respectively.

ANALYSIS

The first step is to derive an expression for e Let

I_Su S12

S=]——

LS21 Sa2

denote the scattering matrix of V (the same attenuator)
normalized to 2, at port 1 and 2; at port 2. Then, pro-
ceeding as before [see (10)],

(15)

21— Zg I? 1
A =101log |1 — + 20log—— - (16)
( 2+ 2% > | 521
Now
- 21 — &, 2: _z_l:ﬁ_‘é’_z”
21+ 2z, 21+ 2, 21+ %
_ (25 + 25) (2 + 21)
B (21 + 20 (81 + %)
_a-inka-ny

[ 1 — T,

The details appear in Appendix I. Before (16) can be
used, a relationship between the elements of S and S, is
required. This is necessary since the calibration of the
attenuator is described by the elements of S, when nor-
malized to 2o and 24 and is used between terminations
z, and z; which in general are different from 2g, 2. In
Appendix 11 it is shown that

1—T, sn° -+ FQP1322° — INA, — I_'g

§1q = 18
R D, "
1—-I,|1-T4
S12 = -
1-T, 11-1
512° 1 — I 2 1— T 2
. 12 \/( l g )( ’ ll) (19)
D,
1—-T, | 1-T,
So1 = -
1—-—1;, 1 1—-1T,
21V (1 — | T, 123 (1 — [ 'y |2
‘21\/( I y)( l ll) (20)
D,
and
52y = 1 - {‘1'82204— Pyrlé‘u” — A, — T, 1)
1 s Pl -Do
where
Ao = detSO = §11°S92° — $12°591° (22)
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and
Do = 1 - I‘g3110 - I‘nggo + FgFlAa. (23)
From (20)
$91° 12 l-Do 2
2= . (24)
So1 (1—" iP0]2)(1— fI‘;l“)

Combining (13) and (15) results in

° %y ~— B4

e = 10 log

2 -+ By > (25)

which reduces to the following compact expression when
(17) and (24) are substituted into (25):

2
+ 10]0g<1 -

$21

[

e = 2010
8 1 -1,

(26)

I db.

To find the largest value of | €|, | €] max, it is necessary to
determine the two extreme limits

D,

&yl B @7
and
Am = J D (28)
1 =TT lnin

subject to the physical realizability restrictions dis-
cussed above. If

Adar <1, (29)
then
| €mex = — 20 log N = 20 log A%, (30
but if
Adar > 1, (31)
then
| €|mex = 20 log Asr. (32)

The choice of formula will depend, in general, not only
on the attenuator setting, A,, but also on the parameters
fsu"! , lslz"], |522°] , fI’ol and ]I‘z[. We shall see later
that for lossless N (filters, cutoff attenuators, etc.) the
three quantities 4., fI‘gl and [F;] suffice.

CONSTRAINTS

The passivity requirement on N is equivalent to stat-
ing that the three principal minors of the 2:X2 hermitian
matrix

Qo =1, — So*So
are non-negative,” i.e.,
! Su”l2 + l 3120[2 <1
2 [sme2 <1

(33)
(34)

I So2°

7 H. J. Carlin, “The scattering matrix in network theory,” IRE
Trans. oN Circuir THEORY, vol. CT-3, pp. 88-96; June, 1956,
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and

(1 — | s

54+ (1 — l su“lz)(l — ‘ Szz"\z)
>1+2Re (3110522"3_1203—210)- (35)

1 - l S21°

If N is lossless, 1,—S,%S,=0, and the inequalities in
(33)—-(35) become equalities:

I 811"]2 + l 512012 =1, (36)
S29°2+ {502 =1 (37)

and
$21°511° + $22°512° = (38)

Eqgs. (36)—(38) imply the equality of the magnitudes of
front and back-end reflection coefficients:

(39)

[ swe] = [ o]

As a rule attenuators are lossy but there are situations
in which lossless transforming networks play a role, and
they will be discussed later on.

The most important realizability constraint is the
inequality expressed in (35). To cast it in a more man-
ageable form let

$11° = !311" e
$12° = ( 512"{ 2012
s2° = | 521°| €/
So0° = I $207 | €22, (40)

Substituting in (35) and simplifying yields
(1= s [ = [sa]) + (1 = [on [0 = [ s ]9)
>1 4+ 2| s110522"3120s21°l cos 8 (41)
where
= 011 + 022 — 612 — 0Oo1. (42)

For reciprocal attenuators, si’=sy’ and hence |s°]
= I 521"] , 012="02 and

B8 = 011 + Ba2 — 2011,

Clearly, (41) implies that any four realizable magnitudes
Isu"} , l 521"| , [312"] and Im"! satisfy the inequality

(U= s DA = Tsao|D + (1 = [su2]DA = | 5002
>1 - 21 51103220512"521"] . (44)

(43)
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For lossless twoports, (41) simplifies considerably. Using
(38) we find

011 + O22 — 012 — Oy = (2k + L)m.

It is easily verified that, in this case, the equality sign is
attained in (44).

Let us return to the problem of determining Ay and
An. Before embarking on the general analysis, it is advis-
able to dispose of a simple but important case first.

(47)

Case 1

At least one port matched. For this case, either I',
or I'; or both are zero. Suppose, to be definite, that
T'y=0. From (23), (27) and (28)

A= 14 | Tusyye| (48)
Aw =1 — | Dusgy? (49)
Since
A = 1 — | Tysag® |2 < 1,
| €mex = — 201l0g (1 — | Tusaz®] ). (50)

To achieve (48), I'; must be 180° out of phase with sa°.
In order to attain (49), I'; must be in phase with s’
Both are compatible with physical realizability. Replac-
ing log @ by In ¢ in (50) we obtain for small |I‘15220l

l Glm:av.x ~ 4-61 I1Z~Y22oi . (51)
The per cent decibel error is
max 20log (1 — | T'isee®
Ij*xmo:— g ( A( s 1o, (52)

It is not possible to express (52) solely in terms of the
attenuator setting 4, unless |sy°| is known as a func-
tion of 4, Naturally, if I';=0 we simply replace I'; by
I', and s2° by s11° in (41)—(52).

Filters and cutoff attenuators are, to an excellent
approximation, examples of dissipationless attenuators
and are important not only at low frequencies but also
in the microwave region. For them, a complete answer
to the question of mismatched terminations is available.

Case 2

The attenuator N is dissipationless. The pertinent
equations are (36), (37), (39) and (47). Making use of
them we get

= 05400 | gilf11+822) 0¢, .0 j(012+021)
This corresponds to a choice of phases, for which A Ivsu 2] € l S22 { e
8= (2k4-1)m, k being an integer: = ¢/Cuthan), (53)
<
611 + 022 - 012 - 021 = (Zk + 1)71' (45) Net I [
I‘g = I‘a e9Bg
According to (41), the principal value of 8 cannot be
too small. Its lower bound is determined from the equa- and
tion I' = ! Tzl e,
L= [s2°)( — {52+ (1 — |52 — {5220y — 1
COS Bmin = ( I = )( : l ) ( i = ] )( ‘ = l ) ° (46)

2 f $11°522°512°521°
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Then
D, 1— ﬂ[l pg] eI Botor) 4 l pll iG] - | T Ty | e7(On+onteots)
1—T,T, 1 — | T,T;| eitGats (54)
where Now the magnitude of x is fixed at the value |T';| but

n = lSu”I = ]sn"[ = (1 — 10~4e/20)1/2,

(55)

Of course, A4, represents the attenuator setting in
decibels. In the form (54), realizability has been taken
care of automatically and 6., 6, B, B: are arbitrary
angles. If we set

&= |T,| et
and
y = | Ty| esrron,
D, 1—9x+9y) +2
_ 7( 3’). y (56)
1—-1,00 1-— lI"aI‘llgr(ﬂa+ﬂl)

where x and vy are complex numbers with arbitrary
phases but whose magnitudes are |T',| and ]I‘zl , respec-
tively. A moment’s thought reveals that

=1+77(]F9| + lrl])+ IPgFZl

(57)

. 1 — | 1,7y

and
] 1 - min

Ml -

14 | 1,1

Let us focus our attention on the quantity

u=1—g+y+ey=_(—ny+1—m (59

For a fixed x, » is a linear transform of y. Consider the
mapping

u = az+ . (60)
Then
u~—b
Z =
a
and the circle | z| 2=72 goes into the circle
lar|=|u—0b] (61)

whose center in the complex plane is » and whose radius
is !a] r. From (59), the circle ]y I= IfFl| 2 {s transformed
into a circle with center located at 1—nx and radius
= ]x—n{ -]F,,f (see Fig. 3).

We note that

| ]max = OC + CB = OC + r =
| 4lmin = 0C — AC =0C — r =

[1—na| +7 (62)
| 1 —nxl — 7. (63)
Hence,

(64)
(65)

|1 — x| + 1] |5 -1
[t —ne] —[Te| - [o—mn].

| 2 fmax =

l u]min =

its phase is arbitrary. Obviously, as we vary over the
phase of x,

l%lmax,max=1+nlpﬂl _'_[Pll(l Fﬂ] +77)
=144 1| + | 1])+ | 7Ty

as predicted earlier. The more difficult quantity to
evaluate is fu|min,min, the variation again being taken
over the phase of x.

Letx= II‘g[ e, Then, substituting in (65) we get

| Hlmin =(1 - 277| I‘,,] cos@+n2| I‘,,IZ)”2
— |1} (| 1.2 — 29| Ty| cosd + p212 (66)
and the whole problem is reduced to finding the relative
minima of (63) as a function of 6. This is a standard
problem in the differential calculus which presents no

particular difficulty. The details are relegated to Ap-
pendix I11. Keeping in mind that

l u ’min,min

"Tiw o
the results may be summarized as follows:
1) If
L e [P B LV
1— | 1,1y 1+ | 1,04
N 1+ | 0,0 6
VA== |1, - [0
2) T
|1y = | 1]
1+ |1y
Al = - (70)
| PO [ T

[« TRANSFORMED CIRCLE
2
lu-bl“=1ari

o

Fig. 3—Image of the circle |y]2=|T;|%.
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3) If
| r,] + |14
- 71
TSy o oy
1 r,T
Nt = + [ or] )
L=g(| 1] + 1) + [ 7T
In all cases,
l elmax = largest (20 log Az, 20 log A\™Y), (73)
where
1 T, T r,I
S trndrl e+ nnf o

1—- [Parli

PRACTICAL APPLICATIONS

To facilitate the application of the above equations,
graphs have been prepared and these are displayed in
Figs. 4 to 10. Fig. 4 is a plot of 7 as a function of (4,),
the attenuator setting. Values of

LI“,I ‘{"]Pll

14+ | 1,0y
and

1| = |1

1— | 1,1y

are obtained from Figs. 5 and 6 which are plotted as a
function of |T,|. In both cases, |T';| is the parameter.
Egs. (68), (70), (72) and (74) are displayed in nomograph
form in Figs. 7-10 respectively. Each chart contains
a key. The numerical sequence indicates the order of
steps. Fig. 8 is the only chart with a restriction. In using
the extreme right hand side of the chart, if |l’l‘ > ‘I’g ,
then the |I‘l‘ scale becomes lI‘gl and ‘I’g[ scale |Pl .

To illustrate the use of these curves, consider the fol-
lowing example. A cutoff attenuator reads 10 db when
operating between mismatched terminations specified
by [T,] =0.1 and |T,| =0.2. Find the largest possible
error consistent with physical realizability. The pro-
cedure is as follows. Figs. 4-6 provide the necessary
information to determine which curve should be used to
obtain the largest minimum error. For this example,
Fig. 4 shows for 4,=10 db, n=10.949. For the values of
fI’g[ and [1’1[ quoted, Fig. 5 yields

|T,| + |1y
1+ | 1,1,

= 0.294,

and Fig. 6 yields a value of 0.102 for
i) = im]l
1— | 1,0

Since 0.949>0.294, we have Case 3 and (72) applies;
therefore, Fig. 9 must be used. Step 1 is to connect
[Ty to |T,| for a reference line. Draw a line through
7 =0.949 parallel to the reference line and read I;=0.29.
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Connect |T,| to |T| in left side of chart and read
Q=1.025. Connect Q on upper scale to I; and read
N~ 1=1.375. To determine Ay Fig. 10 is used. The first
step is to connect || and |T| to obtain a reference
line. Since this part of the chart is similar to Fig. 9,
the same procedure is followed and a value of [;=0.29
is obtained. Step 3 yields a value of 1.025 for Q, and
step 4 a value of 0.975 for T. Connecting ’=0Q on
upper chart to I, yields a reference line. Drawing a line
through T parallel to this reference line yields a value of
1.33 for Ay Hence, A=t >A3r and

| €|max = 20 log (1.375) = 2.77 db,

which is quite large. As far as the actual attenuation 4
is concerned, it always lies between limits determined
by Ao A and Ay From (13)

A, — 20 log Mt £ 4 < A, + 20 log Ay (75)

Using previous techniques, the problem proceeds as
follows.

For the values quoted, the VSWR of the load and gen-
erator when they are not connected to the attenuator
are 1.5 and 1.22, respectively. The maximum and mini-
mum value of the VSWR of the input line when the
output is terminated in a load r;,=1 is given by

—_ 4
Fmax = ¥ 7L

and

7 ,

— for v’ > ry,

YL

Ymin =

YL

— for rr, > 7/
'

where 7’ is the VSWR produced in the input line when
the output is properly terminated; that is, r;=1. For a
lossless 10 db attenuator ' =38.22. Hence, 7mux=57.33
and #7min=25.48. The error limits are evaluated from
(8) of Beatty's paper® which is

1+ ‘Flryl)(li ISQ2PL|)
15 | 1,0, '

emin = 20 log

In the above I'y and Ss are the input reflection
coefficients of the attenuator terminated in a load hav-
ing a reflection coefficient of I';, = 0.2 and 0, respectively.
The reflection coefficients corresponding t0 #max, Fmin,
7', rr and 7, are 0.966, 0.924, 0.949, 0.2 and 0.1, respec-
tively. The maximum and minimum error limits using
the above relation are 2.86 and 2.48 db, respectively.
There is a slight difference in the larger value and, in
general, a difference will always exist, <.e., larger error
limits arise from the use of previous existing techniques.
It is evident that the use of the curves expedites the
evaluation of error limits. In addition, it is usually not
obvious which maximum will be the larger, depending
upon the choice of signs used in (8) above, whereas this
information can usually be obtained from the curves in
this paper.
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APPENDIX I

We begin by establishing (17). From (12) and (13)
we obtain

b= —T s (76)
1—-T1,
and
S - ()
1 -1y
where
%o = ¥y -+ jXo.
From (76) and (77),
1— |1,
2, + 2, = 27, Tl_:l",, . (78)
IR Wil kol i (79)
[1-T
Again,
25 4 21 = 2, *—{;ILQ—I—‘Z— (80)

Substituting (78), (79) and (80) into the equation
directly above (17) immediately yields (17), Q.E.D.

APPENDIX II

Before showing this relationship, we first introduce
matrix notation which is consistent with Beattv.® If 4
is an arbitrary matrix, then 4/, 4’=4% det A and 4!
denote the transpose, the complex conjugate transpose
(also called the adjoint), the determinant and the in-
verse of A, respectively. Column vectors are written
a, b, x, etc.

In the text since two sets of impedances, 21, 202z and
2, and z; were used two different scattering matrices .S,
and S were required to describe N. To determine a
relationship between S and S, we begin with expressions
(1) and (2). By definition

b, = S.a,
b = Sa.

(81)
(82)

From (1) and (2) the following equations (in matrix
form) are obtained:

2R Ma, =V -+ Z,I (83)
2R, =V — Z*I (84
2RY%a =V 4+ ZI (83)
2RV’ =V — Z*I. (86)

Using (83) and the first formula below (16) in Youla’
and (18) of the same paper results in

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

May

Vb 21 = V4 ZJ 4+ (Z — Z)I
= 2R01/230 + (Z - Zo) YA(}EO

= 2R + (Z — Z)R; 11, — So)]a,. (87)

Similarly,

V — Z*I = [2R? — (Z* + Z)R,12(1, — S)]as  (88)

where Y40 and Y4 are the augmented admittance ma-
trices corresponding to Z, and Z, the impedance ma-
trices which normalize .S, and S, respectively. From the
above there results

2R 4 (Z — ZY)R;V2 = (Z + ZX)R,12 (89)
and
IR — (Z* + Z)RM? = (Z* — Z¥)R; V2 (90)
Set
I'=RMYNZ A ZXHZ — Z,)R, 7?2 o1
or
=1, = 2RM¥(Z + Z,%)7 R, M? (92)
I'=R7VHZ — Z)(Z + ZJ) 'R, (93)
From (82)
V — Z¥I = RU°SRY(V + ZI). (94)
Using (91) and (94)
(Z¥* 4 Z)R,V(S, — T*)
= R\WSR-1(Z + ZSR, (1, — T'S,). (95)
From (92) and (93)
(Z + ZF)R,12 = 2R, (1, — T)™! (96)
and
(Z* + Z,)R 1 = 2R,V (1, — T*)~L, (97)
Finally,
S = R7RM¥(1, — T*)~1(S, — I")(1, — TI'S,)!
-(1, — T)R,2RY2, (98)

the desired transformation. For a two-port
R, = diag [r,,, 7,,]
Z, = diag [Z.,, Z,,)
T = diag [I‘{,, Pz]

and expressions 18 to 21 in the text follow.

ArpEnDIx III

Our next task is to derive (67)—(72). To find the
minima of I 1t | min 1t 18 necessary to set the first 0 deriva-
tive of (66) equal to zero. Thus,
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sin 8 7+ ! Przl
r, > — 10
V1= 2] T, ] cos+ n2| T, 2 || 14 4|1, (108)
B | T,| sing o and a maximum otherwise. The value ot 8 given by (100)
N \/] T, ]z — 2 l Pal c0s 8 + 1° - (99 always results in a minimum. To summarize,
The solutions are 1 1 ’ ] !
77— | I 7+ | Ty
=0, « —_— < I € 109
1 —n|1,] T t+ar, 1
and
At L+ | Tl (110)
(1 — T, 2 T, |2 — T, |2 m = e .
cosg = 2' 1”;")1* "; (00 VA== [T, = 1y
ui ol ( 112 2) If
The corresponding !zt mm are [ . ‘ r [ l
T - ',
) 0. ST (111)
[um;nzl—nll‘gl— I, ‘|’7“ I‘Q[. (101) 1+[1‘ng
oo A (112)
=T I—W‘FA lrl{ ln—JI’uH
itfmin = 14 0(| Ty — | Tuf) — | 11y (102) 3) If
100):
( ) ‘ o ‘ 7 j—__LFg’ "
[ #hoe = VA =)L = [T = [T (109) 1T e
To decide when these values are actually minima, we . 14 I PgI‘zi
. ; ; . Ap b= < (114
must calculate the second 6 derivative of [u min and 1+ 77(’ I‘gl _ l Tzl ) — I PgI‘zl (114

evaluate it at the respective points. Omitting the de-
tails we have the following results:
=0
@] 1t |min

ae?

=o 0l (= - lnl—rfirgu)

6 =m:

) tt

de?

(104)

(100):
d2[ u
7S

=k

min

(106)

T (1= |13 =90,

k being a positive constant.
Consequently, (100) always leads to a minimum. Eq.

(104) reveals that §=0 yields a minimum whenever

]

(107)

and a maximum otherwise. Similarly == yields a
minimium when

As they stand, (109)~(114) are unsymmetric in ' I‘,,] and
‘Fl‘. To remedy this defect, we argue as [ollows. Let
fF,,|, ‘Fl’ and 7 be three values consistent with (91).
Consider the bilinear transformation

(115)

As £ describes the circle I E| =mn, w also describes a circle
and [urthermore

T
b= Inl L yy cnb Il
1 — |1, L+q]1,

i.e., |w| yields all the values |T,| compatible with (109).
Let ’w‘ = |I’,1 denote one of these. Solving (115) for £
gives

g—ﬁjwl r| (116)

+w 1 Ty \
As w describes the circle |w| =|T], £ also describes a
circle and on this circle
(11, = 1 7] [Tl + | 1]
< =5 < — L.
1— |, 6l =< 14 |1, (1n

That is to say, for a prescribed |T',| and |T], (117)
vields all 7 compatible with (109). In short, (109) and
(117) are equivalent. Following this reasoning to its
logical conclusion, we obtain (67)—(72), Q.E.D.



